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Multi-Armed Bandit
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Stateless
• Action: pull one of k arms
• Reward for pulling that arm

at each time step t :

choose action at among k actions

receive reward rt for taking action at

• Taking action a is pulling arm i which gives reward r(a) with probability pi

• Probabilities distributions p1,...,pk are unknown
• Goal is to maximize total expected return



Multi-Armed Bandit
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• Value of action a is expected reward: Q*(a) = E[rt | at = a]
we don’t know the action values

• Estimate value of action a at time t: Qt(a)
• For example keep current mean reward for each action



Greedy Action
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• A greedy action takes the best estimate at time t, exploiting knowledge

at = argmax_a Qt(a)

• For example choose action with largest mean reward.

• A non-greedy action is exploring.



Greedy Action Selection
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-Greedy
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• Behave greedily most of the time:

with probability       choose random action
with probability               choose greedy action



Upper Confidence Bound (UCB)
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• Optimism in face of uncertainty
• Use both mean and variance of reward

• Finite-time Analysis of the Multiarmed Bandit Problem, Auer et al, Machine 
Learning, 2012

• Used in Monte Carlo tree search (MCTS), in expert iteration and AlphaZero.



• Input x
• Function 𝑓
• Output y
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• Input 𝑥
• Function 𝑓
• Output 𝒚

Observation

𝑥 𝑓 𝒚

dx1

1x1

𝒚 = 𝑓(𝑥)



• Input X
• Function 𝑓
• Output 𝒚

Observations

𝐗 𝑓 𝒚

dxm

mx1

𝒚 = 𝑓(𝑿)



Supervised Learning
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Supervised Learning

D
(X,y) g f’

𝑓’ = g(D)



Supervised Learning
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Supervised Learning

D
(X,y) g 𝑓’

X’

𝒚’𝑓’ = g(D)
𝒚’ = 𝑓’(X’)



Online Learning

• Learning algorithm g interacts with oracle multiple rounds
• g holds a classifier 𝑓
• For each round

– Oracle selects a pair (𝒙, 𝑦)
– Learning algorithm g presented with sample 𝒙
– g outputs prediction 𝑦 = 𝑓(𝒙)
– Oracle reveals ground truth label 𝑦
– g changes 𝑓 if mistaken: 𝑦 ≠ 𝑦

^

^



Online Learning
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Online Learning
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Online Learning

• Goal of learning algorithm g is to make as few mistakes
• Oracle may be adversary



Perceptron Algorithm

• init 𝞱 = 𝟎, 𝞱0 = 0
• for t = 1..T

changed = false
– for i = 1..n

• given example 𝒙i

• if prediction was a mistake 𝑦i(𝞱 𝒙i + 𝞱0) ⩽ 0
– then update 𝞱 = 𝞱 + 𝑦i𝒙i, 𝞱0 = 𝞱0 + 𝑦i

– changed = true
– if not changed then break

T



Winnow Algorithm

• Boolean feature vector 𝒙 in {0,1}
• Weights 𝒘 = (𝒘1,..,𝒘n) initialized to 1’s
• Given example 𝒙 then if 𝒘 𝒙 > t predict 1 otherwise 0
• If mistakenly predicted 1 then set 𝒘i = 0 for all i s.t. 𝒙i = 1
• If mistakenly predicted 0 then set 𝒘i = 2𝒘i for all i s.t. 𝒙i = 0 

T

n



Halving Algorithm

• For each round
– Each expert i = 1..N makes a prediction  𝑦i = 𝑓i(𝒙)
– Take majority vote of correct experts until round
– Oracle reveals ground truth label 𝑦

• Algorithm with as few mistakes as possible
• If there is a perfect expert then at most logN mistakes

^



Online Learning to Batch Learning

• Given online learning algorithm g
• Examples S of pairs (𝒙,𝑦)
• Repeat 

– for each pair (𝒙,𝑦) in S
• predict 𝑦 using g
• If 𝑦 ≠ 𝑦 remove pair from S

• Until no mistake is made
^

^



Continual (Lifelong, Sequential) Learning

• Neural network classification: training and testing
generalization, static, often training from scratch

• Continual learning: incremental, dynamic

• Neural networks have catastrophic forgetting of old 
concepts when learning new concepts

• Humans gradually forget, not completely forget all at once



Stability vs. Plasticity

• Learning algorithm should preserve what it has learned: 
stability

• Learning algorithm should quickly learn a new task: 
plasticity

• Goal: effectively update neural network with new 
information over time



Continual (Lifelong) Learning
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Continual (Lifelong) Learning
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Learning New Tasks
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Human Learning on the Job

• 10% formal education and training
• 70% on the job learning
• 20% observation of others
• Open world, self-supervision
• Discover new tasks and continually learn them

Learning on the job: Online lifelong and continual learning, Liu 2020.



Continual (Lifelong, Sequential) Learning

• Endless data stream
• Goal is to learn without catastrophic forgetting

performance on previously learned task should not 
significantly degrade over time when learning new tasks



Backward Transfer

• Influence that learning task t has on performance on previous 
task k < t:

1/(t-1)∑i=1..t-1 (Rti - Rii)
Rij is test accuracy of model on task j after observing last 
sample from task i

• Positive backward transfer: learning task t increases 
performance on preceding task k.

• Negative backward transfer: learning task t decreases 
performance on preceding task k.

• Catastrophic forgetting: large negative backward transfer.



Forward Transfer

• Influence that learning task t has on performance of future 
task k > t.

1/(t-1)∑i=2..t(Ri-1,i - bi)
bi is test accuracy for task i at initialization 

• Positive forward transfer: possible when model is able to 
perform zero-shot learning. For example, using structure 
available in task descriptors



Continual (Lifelong, Sequential) Learning

• Sequential tasks with batches of data
• Optimizing for a new task directly results in catastrophic 

forgetting



Multi-Task Learning

task
data

task
data

task
data

predictor
multi-task
learning
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predictor

predictor Task A
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Task C

• Storing all past examples reduces continual learning problem to 
multi-task problem



Continual (Lifelong, Sequential) Learning

• Perform well on all previous tasks t optimizing:
∑t=1..T E Xt,yt~Dt (ℒ(ft(Xt,𝜽), yt))

yt is a vector yt1,...,ytn

• For current task t
1/n ∑i=1..n ℒ(f(xi, 𝜽), yi)



Replay Methods

• Store past samples or generate pseudo samples
• Store sample subset of observations, for example 

representing each class
• Reuse for training when learning new task, interleave 

training on new and memorized data



Reservoir Sampling

• Stream (xi,yi) for i=1..n
• Memory size m
• For i = 1..n

– If memory is not filled then store (xi,yi)
– Else sample u ~ Uniform(0,1)
– If u <= m/i

• Replace random stored instance of class c == yi

with (xi,yi)
Else ignore (xi,yi)



Reservoir Sampling

• Stores iid subset of stream
• Problem: if stream is imbalanced then memory is 

imbalanced
• Forgetting underrepresented classes quickly
• Solution: take into account labels of observed instances
• Store underrepresented classes, iid subset of each class 



Class Balanced Reservoir Sampling
• Stream (xi,yi) for i=1..n
• Memory size m
• For i = 1..n

– If memory is not filled then store (xi,yi)
– Else

• If c == yi has not been largest class
Overwrite a random instance from largest class with (xi,yi)

• Else mc=# stored instances of class c == yi, nc = total # of stream instance of 
class c == yi

• sample u ~ Uniform(0,1)
• If u <= mc/nc

– Replace random stored instance of class c == yi with (xi,yi)
Else ignore (xi,yi)

Online continual learning from imbalanced data, Chrysakis et al, 2020.



Average Gradient Episodic Memory

• Store subset of observed examples of each task
• Minimize loss on current task while treating average losses of episodic 

memories of previous tasks as inequality constraint
• Avoid increasing, allow decreasing previous average loss, allows positive 

backward transfer. Learning task t objective:
min 𝜽 ℒ(f𝜽, Dt) s.t. ℒ(f𝜽, M) ⩽ ℒ(f𝜽t-1, M) 

where M = UMk for all k < t
f𝜽t-1 is the network trained until task t-1

• Increase in loss of previous tasks: computing angle between their loss 
gradient vector and proposed update

Efficient lifelong learning with A-GEM, Chaudhry et al, 2019



Regularization Methods for Continual Learning

• Add regularization terms in loss: penalize changes in 
network parameters when learning new task

• For example, per-parameter regularization parameters



Neural Network Training

• Optimizing parameters: finding most probable values 
given data D

• Bayes rule, log, rearranging terms

log p(𝞱|D) = log p(D|𝞱) + log p(𝞱) - log p(D)

L(𝞱) = - log p(D|𝞱)



Regularization for Continual Learning

• Data split into independent parts D1 and D2 for tasks:
log p(𝞱|D) = log p(D2|𝞱) + log p(𝞱|D1) - log p(D2)

L2(𝞱) = - log p(D2|𝞱), all information of task 1 in posterior log p(𝞱|D1), approximate
• Estimate distribution over model parameters, use as prior when learning from 

new data, penalize changes to important parameters
• Remember old tasks: slow learning on weights for old tasks

Figure source: Overcoming catastrophic forgetting in neural networks, Kirkpatrick et al, PNAS 2017



Elastic Weight Consolidation

• Given approximation

min𝞱 ℒ(𝞱) = ℒ2(𝞱) + ∑i 𝛼/2𝒇i(𝞱i - 𝞱*1i)

• ℒ2(𝞱): loss of task 2 only
• 𝛼: importance of old task compared with new task
• i: each parameter label

Source: Overcoming catastrophic forgetting in neural networks, Kirkpatrick et al, PNAS 2017



Iterative Pruning and Retraining

• Exploit redundancies in DNNs to free up parameters that 
are used to learn new task

Figure source: PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning, Mallya and Lazebnik, 2018



Iterative Pruning and Retraining

• Training:
• Initial training of network for task 1 learns dense filter
• Pruning and re-training results in sparse filter for task 1: white circles 0 weights, task 1 weights in 

gray remain fixed and are not pruned.
• Pruned weights are updated for task 2: filter for task 2 shares weights learned for task 1.
• Pruning and re-training results in filter used for evaluating task 2, weights for task 2 (orange) are 

fixed. Process continues until running out of pruned weights

Figure source: PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning, Mallya and Lazebnik, 2018



Iterative Pruning and Retraining

• Testing: appropriate masks applied depending on task to 
replicate filters learned for task

Figure source: PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning, Mallya and Lazebnik, 2018



Self-Supervised Learning

• Transform unlabeled images
• Label images according to transformation
• Train network with parameters (θb, θs)

θb shared backbone parameters, θs self-supervision parameters
• Transfer learning using θb fine tuning for main task (θb, θm)

θm main task parameters 



Distribution Shift

• Training and test distributions are often different



Test-Time Training

• Unlabeled test sample x provides hint about test 
distribution

• Allow model parameters θ to depend on test sample x
• Learn from a single sample using self-supervision

Source: Test-time training with self-supervision for generalization under distribution shifts, Sun et al, 2020



Test-Time Training

• Training
minθb,θm,θs ℒm(X, y; θb, θm) + ℒs(X, ys; θb, θs)

• Testing: initialize with θ = (θb, θs) from training
minθb,θs ℒs(x, ys; θb, θs)

• Prediction: θ(x) = θ*b, θm, where θ*b is from testing
• Online prediction: θ(xt) initialized with θ(xt-1), allows using 

information in x1,..,xt
Source: Test-time training with self-supervision for generalization under distribution shifts, Sun et al, 2020



Test-Time Training

Figure source: Test-time training with self-supervision for generalization under distribution shifts, Sun et al, 2020



Test-Time Training

Figure source: Self-supervised policy adaptation during deployment, Hansen et al, 2020



Lifelong Latent Actor-Critic

Figure source: Deep reinforcement learning amidst lifelong non-stationarity, Xie et al, 2020



Open-Ended Reinforcement Learning

• Grow population of environment-agent pairs
• Continually produce new and increasingly complex 

environments using mutations, random perturbations
• Train agents that learn to solve them
• Goal switching
• Compute distance between environments

Source: Enhanced POET: Open-ended reinforcement learning through unbounded invention 
of learning challenges and their solutions, Wang et al 2020



Self-Modeling

1. Robot recorded action-sensation pairs
2. Deep learning self-model consistent with data
3. Self-model used for planning of separate tasks
4. Emulate damage and morphological change
5. Adapting self-model from new data
6. Continual tasks

Figure source: Task-agnostic self-modeling machines, Kwiatkowski and Lipson, Science Robotics 2019
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