
Meta Learning
MIT

Iddo Drori, Fall 2020

Multi-Armed Bandit

2

Stateless
• Action: pull one of k arms
• Reward for pulling that arm

at each time step t :

choose action at among k actions

receive reward rt for taking action at

• Taking action a is pulling arm i which gives reward r(a) with probability pi

• Probabilities distributions p1,...,pk are unknown
• Goal is to maximize total expected return

Multi-Armed Bandit

3

• Value of action a is expected reward: Q*(a) = E[rt | at = a]
we don’t know the action values

• Estimate value of action a at time t: Qt(a)
• For example keep current mean reward for each action

Greedy Action

4

• A greedy action takes the best estimate at time t, exploiting knowledge

at = argmax_a Qt(a)

• For example choose action with largest mean reward.

• A non-greedy action is exploring.

Greedy Action Selection

5

-Greedy

6

• Behave greedily most of the time:

with probability choose random action
with probability choose greedy action

Upper Confidence Bound (UCB)

7

• Optimism in face of uncertainty
• Use both mean and variance of reward

• Finite-time Analysis of the Multiarmed Bandit Problem, Auer et al, Machine
Learning, 2012

• Used in Monte Carlo tree search (MCTS), in expert iteration and AlphaZero.

• Input x
• Function 𝑓
• Output y

Observation

input

dx1

1x1

outputfunction

• Input 𝑥
• Function 𝑓
• Output 𝒚

Observation

𝑥 𝑓 𝒚

dx1

1x1

𝒚 = 𝑓(𝑥)

• Input X
• Function 𝑓
• Output 𝒚

Observations

𝐗 𝑓 𝒚

dxm

mx1

𝒚 = 𝑓(𝑿)

Supervised Learning

task
data predictorlearning

algorithm

Supervised Learning

D
(X,y) g f’

𝑓’ = g(D)

Supervised Learning

task
data predictorlearning

algorithm

test
data

prediction

Supervised Learning

D
(X,y) g 𝑓’

X’

𝒚’𝑓’ = g(D)
𝒚’ = 𝑓’(X’)

Online Learning

• Learning algorithm g interacts with oracle multiple rounds
• g holds a classifier 𝑓
• For each round

– Oracle selects a pair (𝒙, 𝑦)
– Learning algorithm g presented with sample 𝒙
– g outputs prediction 𝑦 = 𝑓(𝒙)
– Oracle reveals ground truth label 𝑦
– g changes 𝑓 if mistaken: 𝑦 ≠ 𝑦

^

^

Online Learning

𝒙1,𝑦1

~ D

g

𝒙2,𝑦2

~ D
𝒙3,𝑦3

~ D
𝒙n,𝑦n

~ D

predictor predictor predictor predictor

predictionpredictionpredictionprediction

Online Learning

𝒙1,𝑦1

~ D

g

𝒙2,𝑦2

~ D
𝒙3,𝑦3

~ D
𝒙n,𝑦n

~ D

𝒚2̂𝒚1̂ 𝒚n̂𝒚3̂

𝑓1 𝑓2 𝑓3 𝑓n

Online Learning

• Goal of learning algorithm g is to make as few mistakes
• Oracle may be adversary

Perceptron Algorithm

• init 𝞱 = 𝟎, 𝞱0 = 0
• for t = 1..T

changed = false
– for i = 1..n

• given example 𝒙i

• if prediction was a mistake 𝑦i(𝞱 𝒙i + 𝞱0) ⩽ 0
– then update 𝞱 = 𝞱 + 𝑦i𝒙i, 𝞱0 = 𝞱0 + 𝑦i

– changed = true
– if not changed then break

T

Winnow Algorithm

• Boolean feature vector 𝒙 in {0,1}
• Weights 𝒘 = (𝒘1,..,𝒘n) initialized to 1’s
• Given example 𝒙 then if 𝒘 𝒙 > t predict 1 otherwise 0
• If mistakenly predicted 1 then set 𝒘i = 0 for all i s.t. 𝒙i = 1
• If mistakenly predicted 0 then set 𝒘i = 2𝒘i for all i s.t. 𝒙i = 0

T

n

Halving Algorithm

• For each round
– Each expert i = 1..N makes a prediction 𝑦i = 𝑓i(𝒙)
– Take majority vote of correct experts until round
– Oracle reveals ground truth label 𝑦

• Algorithm with as few mistakes as possible
• If there is a perfect expert then at most logN mistakes

^

Online Learning to Batch Learning

• Given online learning algorithm g
• Examples S of pairs (𝒙,𝑦)
• Repeat

– for each pair (𝒙,𝑦) in S
• predict 𝑦 using g
• If 𝑦 ≠ 𝑦 remove pair from S

• Until no mistake is made
^

^

Continual (Lifelong, Sequential) Learning

• Neural network classification: training and testing
generalization, static, often training from scratch

• Continual learning: incremental, dynamic

• Neural networks have catastrophic forgetting of old
concepts when learning new concepts

• Humans gradually forget, not completely forget all at once

Stability vs. Plasticity

• Learning algorithm should preserve what it has learned:
stability

• Learning algorithm should quickly learn a new task:
plasticity

• Goal: effectively update neural network with new
information over time

Continual (Lifelong) Learning

predictor

continual learning algorithm

predictor predictor predictor

task
data

task
data

task
data

task
data

Continual (Lifelong) Learning

𝑿1,𝒚1

~ D1

predictor

g

𝑿2,𝒚2

~ D2

predictor

𝑿3,𝒚3

~ D3

predictor

𝑿n,𝒚n

~ Dn

predictor

𝑿t = (𝒙t1, …, 𝒙tn)
𝒚t = (𝒚t1, …, 𝒚tn)

task1 task2 task3 taskn

Learning New Tasks

𝑿1,𝒚1

~ D1

predictor

g

𝑿2,𝒚2

~ D2

predictor

𝑿3,𝒚3

~ D3

predictor

𝑿n,𝒚n

~ Dn

predictor

𝑿t = (𝒙t1, …, 𝒙tn)
𝒚t = (𝒚t1, …, 𝒚tn)

task1 task2 task3 taskn taskn+1

𝑿n+1,𝒚n+1

~ Dn+1

predictor

Human Learning on the Job

• 10% formal education and training
• 70% on the job learning
• 20% observation of others
• Open world, self-supervision
• Discover new tasks and continually learn them

Learning on the job: Online lifelong and continual learning, Liu 2020.

Continual (Lifelong, Sequential) Learning

• Endless data stream
• Goal is to learn without catastrophic forgetting

performance on previously learned task should not
significantly degrade over time when learning new tasks

Backward Transfer

• Influence that learning task t has on performance on previous
task k < t:

1/(t-1)∑i=1..t-1 (Rti - Rii)
Rij is test accuracy of model on task j after observing last
sample from task i

• Positive backward transfer: learning task t increases
performance on preceding task k.

• Negative backward transfer: learning task t decreases
performance on preceding task k.

• Catastrophic forgetting: large negative backward transfer.

Forward Transfer

• Influence that learning task t has on performance of future
task k > t.

1/(t-1)∑i=2..t(Ri-1,i - bi)
bi is test accuracy for task i at initialization

• Positive forward transfer: possible when model is able to
perform zero-shot learning. For example, using structure
available in task descriptors

Continual (Lifelong, Sequential) Learning

• Sequential tasks with batches of data
• Optimizing for a new task directly results in catastrophic

forgetting

Multi-Task Learning

task
data

task
data

task
data

predictor
multi-task
learning
algorithm

predictor

predictor Task A

Task B

Task C

• Storing all past examples reduces continual learning problem to
multi-task problem

Continual (Lifelong, Sequential) Learning

• Perform well on all previous tasks t optimizing:
∑t=1..T E Xt,yt~Dt (ℒ(ft(Xt,𝜽), yt))

yt is a vector yt1,...,ytn

• For current task t
1/n ∑i=1..n ℒ(f(xi, 𝜽), yi)

Replay Methods

• Store past samples or generate pseudo samples
• Store sample subset of observations, for example

representing each class
• Reuse for training when learning new task, interleave

training on new and memorized data

Reservoir Sampling

• Stream (xi,yi) for i=1..n
• Memory size m
• For i = 1..n

– If memory is not filled then store (xi,yi)
– Else sample u ~ Uniform(0,1)
– If u <= m/i

• Replace random stored instance of class c == yi

with (xi,yi)
Else ignore (xi,yi)

Reservoir Sampling

• Stores iid subset of stream
• Problem: if stream is imbalanced then memory is

imbalanced
• Forgetting underrepresented classes quickly
• Solution: take into account labels of observed instances
• Store underrepresented classes, iid subset of each class

Class Balanced Reservoir Sampling
• Stream (xi,yi) for i=1..n
• Memory size m
• For i = 1..n

– If memory is not filled then store (xi,yi)
– Else

• If c == yi has not been largest class
Overwrite a random instance from largest class with (xi,yi)

• Else mc=# stored instances of class c == yi, nc = total # of stream instance of
class c == yi

• sample u ~ Uniform(0,1)
• If u <= mc/nc

– Replace random stored instance of class c == yi with (xi,yi)
Else ignore (xi,yi)

Online continual learning from imbalanced data, Chrysakis et al, 2020.

Average Gradient Episodic Memory

• Store subset of observed examples of each task
• Minimize loss on current task while treating average losses of episodic

memories of previous tasks as inequality constraint
• Avoid increasing, allow decreasing previous average loss, allows positive

backward transfer. Learning task t objective:
min 𝜽 ℒ(f𝜽, Dt) s.t. ℒ(f𝜽, M) ⩽ ℒ(f𝜽t-1, M)

where M = UMk for all k < t
f𝜽t-1 is the network trained until task t-1

• Increase in loss of previous tasks: computing angle between their loss
gradient vector and proposed update

Efficient lifelong learning with A-GEM, Chaudhry et al, 2019

Regularization Methods for Continual Learning

• Add regularization terms in loss: penalize changes in
network parameters when learning new task

• For example, per-parameter regularization parameters

Neural Network Training

• Optimizing parameters: finding most probable values
given data D

• Bayes rule, log, rearranging terms

log p(𝞱|D) = log p(D|𝞱) + log p(𝞱) - log p(D)

L(𝞱) = - log p(D|𝞱)

Regularization for Continual Learning

• Data split into independent parts D1 and D2 for tasks:
log p(𝞱|D) = log p(D2|𝞱) + log p(𝞱|D1) - log p(D2)

L2(𝞱) = - log p(D2|𝞱), all information of task 1 in posterior log p(𝞱|D1), approximate
• Estimate distribution over model parameters, use as prior when learning from

new data, penalize changes to important parameters
• Remember old tasks: slow learning on weights for old tasks

Figure source: Overcoming catastrophic forgetting in neural networks, Kirkpatrick et al, PNAS 2017

Elastic Weight Consolidation

• Given approximation

min𝞱 ℒ(𝞱) = ℒ2(𝞱) + ∑i 𝛼/2𝒇i(𝞱i - 𝞱*1i)

• ℒ2(𝞱): loss of task 2 only
• 𝛼: importance of old task compared with new task
• i: each parameter label

Source: Overcoming catastrophic forgetting in neural networks, Kirkpatrick et al, PNAS 2017

Iterative Pruning and Retraining

• Exploit redundancies in DNNs to free up parameters that
are used to learn new task

Figure source: PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning, Mallya and Lazebnik, 2018

Iterative Pruning and Retraining

• Training:
• Initial training of network for task 1 learns dense filter
• Pruning and re-training results in sparse filter for task 1: white circles 0 weights, task 1 weights in

gray remain fixed and are not pruned.
• Pruned weights are updated for task 2: filter for task 2 shares weights learned for task 1.
• Pruning and re-training results in filter used for evaluating task 2, weights for task 2 (orange) are

fixed. Process continues until running out of pruned weights

Figure source: PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning, Mallya and Lazebnik, 2018

Iterative Pruning and Retraining

• Testing: appropriate masks applied depending on task to
replicate filters learned for task

Figure source: PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning, Mallya and Lazebnik, 2018

Self-Supervised Learning

• Transform unlabeled images
• Label images according to transformation
• Train network with parameters (θb, θs)

θb shared backbone parameters, θs self-supervision parameters
• Transfer learning using θb fine tuning for main task (θb, θm)

θm main task parameters

Distribution Shift

• Training and test distributions are often different

Test-Time Training

• Unlabeled test sample x provides hint about test
distribution

• Allow model parameters θ to depend on test sample x
• Learn from a single sample using self-supervision

Source: Test-time training with self-supervision for generalization under distribution shifts, Sun et al, 2020

Test-Time Training

• Training
minθb,θm,θs ℒm(X, y; θb, θm) + ℒs(X, ys; θb, θs)

• Testing: initialize with θ = (θb, θs) from training
minθb,θs ℒs(x, ys; θb, θs)

• Prediction: θ(x) = θ*b, θm, where θ*b is from testing
• Online prediction: θ(xt) initialized with θ(xt-1), allows using

information in x1,..,xt
Source: Test-time training with self-supervision for generalization under distribution shifts, Sun et al, 2020

Test-Time Training

Figure source: Test-time training with self-supervision for generalization under distribution shifts, Sun et al, 2020

Test-Time Training

Figure source: Self-supervised policy adaptation during deployment, Hansen et al, 2020

Lifelong Latent Actor-Critic

Figure source: Deep reinforcement learning amidst lifelong non-stationarity, Xie et al, 2020

Open-Ended Reinforcement Learning

• Grow population of environment-agent pairs
• Continually produce new and increasingly complex

environments using mutations, random perturbations
• Train agents that learn to solve them
• Goal switching
• Compute distance between environments

Source: Enhanced POET: Open-ended reinforcement learning through unbounded invention
of learning challenges and their solutions, Wang et al 2020

Self-Modeling

1. Robot recorded action-sensation pairs
2. Deep learning self-model consistent with data
3. Self-model used for planning of separate tasks
4. Emulate damage and morphological change
5. Adapting self-model from new data
6. Continual tasks

Figure source: Task-agnostic self-modeling machines, Kwiatkowski and Lipson, Science Robotics 2019

Meta Learning
MIT

Iddo Drori, Fall 2020

