I I I N .
’ ’ I Massachusetts Institute of Technol ogy

Meta Learning

MIT
Iddo Drori, Fall 2020

I I Massachusetts Institute of Technology

.)W

i| ‘n\

Multi-Armed Bandit

Stateless

Action: pull one of & arms
Reward for pulling that arm

at each time step ¢:

choose action a: among & actions

receive reward #¢ for taking action a¢

Taking action a is pulling arm / which gives reward r(a)with probability pi

Probabilities distributions p,...,p¢ are unknown
Goal is to maximize total expected return

I I I N .
I I Massachusetts Institute of Technology

LA

Multi-Armed Bandit

Value of action a is expected reward: @*(») = Efrt [ac = a]

we don’t know the action values = I %W 120 W
W0 \‘II\
Estimate value of action a at time & Q:(a) (;:) Epﬁ v ¢ 1 i
For example keep current mean reward for each action \
! |
>

I I I N .
|:| I Massachusetts Institute of Technology

Greedy Action

A greedy action takes the best estimate at time ¢, exploiting knowledge

at = argmoax_a Qe(a)
For example choose action with largest mean reward.

A non-greedy action is exploring.

L [T
Greedy Action Selection

2
<) Which to choose next?
@ @@

I I I I Massachusetts Institute of Technology

E-Greedy

Behave greedily most of the time:

with probability € choose random action
with probability 1 — & choose greedy action

for each each action a do
Qa) =0
N(a) = 0 number of times action is chosen

for each time step do
a = argmaxQ(a) with probability 1 — € and random action with probability e.

a

N(a) = N(a) +1
Q(a) = Q(a) + (r(a) — Q(a))/N(a)

I I I N .
H I Massachusetts Institute of Technology

Upper Confidence Bound (UCB)

Optimism in face of uncertainty
Use both mean and variance of reward

argmax(u(r(a)) +eo(r(a)))

a

Finite-time Analysis of the Multiarmed Bandit Problem, Auer et al, Machine
Learning, 2012
Used in Monte Carlo tree search (MCTS), in expert iteration and AlphaZero.

I I I N .
I I Massachusetts Institute of Technology

Observation

* Input X
* Function f

* Outputy,

I I I N .
I I Massachusetts Institute of Technology

Observation

* Input x4
* Function f
* Output y, .

@ O

y = f(x)

I I I N .
I I Massachusetts Institute of Technology

Observations
* Input X,

* Function f
* Outputy .

@ O

y = f(X)

I I I N .
I I Massachusetts Institute of Technology

Supervised Learning

learning . ,
algorithm '@

I I I N .
I I Massachusetts Institute of Technology

Supervised Learning

@ g ;®

f>=g(D)

I I I I Massachusetts Institute of Technology

Supervised Learning

learning

predictor

algorithm

I I I N .
I I Massachusetts Institute of Technology

Supervised Learning

N
f’ =g(D) a
y = f(X)

I I I N .
’ ’ I Massachusetts Institute of Technology

Online Learning

* Learning algorithm g interacts with oracle multiple rounds
* @ holds a classifier f
* For each round

— Oracle selects a pair (x, y)

— Learning algorithm g presented with sample x

— g outputs prediction y = f(x)

— Oracle reveals ground truth label y

— g changes f if mistaken: y # y

I I I I Massachusetts Institute of Technology

Online Learning
l

predictor

—| predictor predictor predictor

prediction prediction prediction

I I I N .
I I Massachusetts Institute of Technology

9

Online Learning

|

501 @
él
oo

I I I N .
H I Massachusetts Institute of Technology

Online Learning

« Goal of learning algorithm g is to make as few mistakes
* Oracle may be adversary

I I I H I- Massachusetts Institute of Technol ogy
Perceptron Algorithm

e Nit6@=0,00=0
e fort=1..T

changed = false

— fori=1..n
* given example xi
« if prediction was a mistake yi(@'xi + 80) < 0
— then update 8 = 0 + yxi, 8o = B0 + Vi
— changed = true
— if not changed then break

I I I H I- Massachusetts Institute of Technol ogy
Winnow Algorithm

« Boolean feature vector x in {0,1}n

« Weights w = (w1,..,wn) initialized to 1's

« Given example x then if w'x > t predict 1 otherwise 0

 |If mistakenly predicted 1 then set wi= 0 for all i s.t. xi = 1
 |If mistakenly predicted O then set wi = 2wifor all i s.t. xi=0

I I I N .
’ ’ I Massachusetts Institute of Technology

Halving Algorithm

* For each round
— Each expert i = 1..N makes a prediction Ji = fi(x)
— Take majority vote of correct experts until round
— Oracle reveals ground truth label y

* Algorithm with as few mistakes as possible
« |f there is a perfect expert then at most logN mistakes

Online Learning to Batch Learning

Given online learning algorithm g
Examples S of pairs (x,y)
Repeat
— for each pair (x,y) in S

» predict y using g

 If y # y remove pair from S
Until no mistake is made

I"ir .

I I I N .
’ ’ I Massachusetts Institute of Technology

Continual (Lifelong, Sequential) Learning

Neural network classification: training and testing
generalization, static, often training from scratch
Continual learning: incremental, dynamic

Neural networks have catastrophic forgetting of old
concepts when learning new concepts
Humans gradually forget, not completely forget all at once

I I I N .
’ [I Massachusetts Institute of Technology

Stability vs. Plasticity

* Learning algorithm should preserve what it has learned:
stability

« Learning algorithm should quickly learn a new task:
plasticity

« Goal: effectively update neural network with new
information over time

L [———
Continual (Lifelong) Learning

_—
task task task task
data data data data
I

. l [l]
continual learning algorithm

)
—

L [———
Continual (Lifelong) Learning

task taske tasks taskn

I I I I Massachusetts Institute of Technology

Learning New Tasks

task taske tasks taskn taskn+1

_—
Xi= (Xu, . Xu) >
Y = (Yu,... Yn)

g }
predictor 0 & predictor @

I I I N .
’ [I Massachusetts Institute of Technology

Human Learning on the Job

* 10% formal education and training

« 70% on the job learning

« 20% observation of others

* Open world, self-supervision

* Discover new tasks and continually learn them

Learning on the job: Online lifelong and continual learning, Liu 2020.

I I I N .
’ ’ I Massachusetts Institute of Technology

Continual (Lifelong, Sequential) Learning

* Endless data stream
« Goal is to learn without catastrophic forgetting

performance on previously learned task should not
significantly degrade over time when learning new tasks

I I I N .
’ [I Massachusetts Institute of Technology

Backward Transfer

* Influence that learning task t has on performance on previous
task k < t:

1/(t-1)> i=1.+1 (Rt - Rii)

Rij is test accuracy of model on task j after observing last
sample from task i

« Positive backward transfer: learning task t increases
performance on preceding task k.
* Negative backward transfer: learning task t decreases

performance on preceding task k.
« (Catastrophic forgetting: large negative backward transfer.

I I I N .
’ ’ I Massachusetts Institute of Technology

Forward Transfer

* Influence that learning task t has on performance of future
task k > t.

1/(t-1)Y =2 (Ri-1,i - bi)
bi is test accuracy for task i at initialization

« Positive forward transfer: possible when model is able to
perform zero-shot learning. For example, using structure
available in task descriptors

L [T ——
Continual (Lifelong, Sequential) Learning

« Sequential tasks with batches of data
« Optimizing for a new task directly results in catastrophic
forgetting

I I I i I- Massachusetts Institute of Technology
Multi-Task Learning

« Storing all past examples reduces continual learning problem to
multi-task problem

predictor Task A

multi-task
learning
algorithm

>| predictor Task B

predictor Task C

L [T ——
Continual (Lifelong, Sequential) Learning

« Perform well on all previous tasks t optimizing:
>t=1.1 E xy~n. (ﬁ(ft(Xt,H), yt))
yt IS a vector yt1,...,ytn

 For current task t
1/n =10 L(F(Xi, 9), Vi)

I I I N .
’ [I Massachusetts Institute of Technology

Replay Methods

« Store past samples or generate pseudo samples

« Store sample subset of observations, for example
representing each class

* Reuse for training when learning new task, interleave
training on new and memorized data

I I I H I- Massachusetts Institute of Technol ogy
Reservoir Sampling

o Stream (xiyi) for i=1..n
 Memory size m
« Fori=1..n

— If memory is not filled then store (xi,yi)

— Else sample u ~ Uniform(0,1)

— Ifu<=m/

* Replace random stored instance of class c ==
with (Xi,yi)
Else ignore (Xi,yi)

I I I N .
’ ’ I Massachusetts Institute of Technology

Reservoir Sampling

« Stores iid subset of stream

* Problem: if stream is imbalanced then memory is
Imbalanced

« Forgetting underrepresented classes quickly

« Solution: take into account labels of observed instances

« Store underrepresented classes, iid subset of each class

I I H I Massachusetts Institute of Technology

Class Balanced Reservoir Sampling

e Stream (x.y:) fori=1..n
« Memory size m
« Fori=1.n
— If memory is not filled then store (x,y:)
— Else
* If c ==y has not been largest class

Overwrite a random instance from largest class with (xiY:)

* Else mc=# stored instances of class ¢ ==y, nc = total # of stream instance of
class c ==y
« sample u ~ Uniform(0,1)
e Ifu<=mc/nc
— Replace random stored instance of class ¢ == yi with (xi,Y:)

Else ignore (xi,yi)

Online continual learning from imbalanced data, Chrysakis et al, 2020.

IIIHI Massachusetts Institute of Technology
Average Gradient Episodic Memory

« Store subset of observed examples of each task

« Minimize loss on current task while treating average losses of episodic
memories of previous tasks as inequality constraint

« Avoid increasing, allow decreasing previous average loss, allows positive
backward transfer. Learning task t objective:

min @ L(fe, Dt) s.t. L(fe, M) < L(for1, M)
where M = UMk for all k < t
fo.1 IS the network trained until task t-1

* Increase in loss of previous tasks: computing angle between their loss
gradient vector and proposed update

Efficient lifelong learning with A-GEM, Chaudhry et al, 2019

I I I N .
’ ’ I Massachusetts Institute of Technology

Regularization Methods for Continual Learning

« Add regularization terms in loss: penalize changes in
network parameters when learning new task

* For example, per-parameter regularization parameters

I I I H I- Massachusetts Institute of Technol ogy
Neural Network Training

« Optimizing parameters: finding most probable values
given data D

« Bayes rule, log, rearranging terms

log p(€|D) = log p(D|6) + log p(8) - log p(D)

L(@) = - log p(D|6)

III|:|I Massachusetts Institute of Technology
Regularization for Continual Learning

« Data split into independent parts D1and D2 for tasks:
log p(6|D) = log p(D2|0) + log p(6|D1) - log p(D2)
L2(8) = - log p(D2|0), all information of task 1 in posterior log p(€|D1), approximate

« Estimate distribution over model parameters, use as prior when learning from
new data, penalize changes to important parameters
« Remember old tasks: slow learning on weights for old tasks

1.0 i [
A train A train B train C B single task performance
1.0 ; ‘ EWC B
< —_—
- | ‘ <ch 1 EWC
® 08+ 1]
| . = 0.9
w 1.0- , ! S
= E— — — c
K : ' £
0.8 - ! | 8
! : R
v 1.0+ ' ! 0.8
- 1 fon PR
° . ! SGD+dropout
0.8 ! L T T T T T T T T T

2 3 4 5 6 7 8 9 10
Frac. correc t Training time Number of tasks

Figure source: Overcoming catastrophic forgetting in neural networks, Kirkpatrick et al, PNAS 2017

IIIHI Massachusetts Institute of Technology
Elastic Weight Consolidation

Given approximation

mine L(0) = L2(0) + Yiarfi(0i - 0*1i)

L2(0): loss of task 2 only
a: importance of old task compared with new task
i each parameter label

Source: Overcoming catastrophic forgetting in neural networks, Kirkpatrick et al, PNAS 2017

I I I N .
’ [I Massachusetts Institute of Technology

Iterative Pruning and Retraining

« Exploit redundancies in DNNSs to free up parameters that
are used to learn new task

OO OO O00O00O| O
o O o0 |0 0000

O o O oo |O000 | O
O O |e0 O 00 0|00
O O OXN©, O000| ®0000

(a) Initial filter for Task | (b) Final filter for Task | (c) Initial filter for Task Il (d) Final filter for Task Il (e) Initial filter for Task Il
60% pruning + re-training training 33% pruning + re-training training

Figure source: PackNet: Adding Multiple Tasks to a Single Network by lterative Pruning, Mallya and Lazebnik, 2018

I I H I Massachusetts Institute of Technology

Iterative Pruning and Retraining

* Training:

* Initial training of network for task 1 learns dense filter

* Pruning and re-training results in sparse filter for task 1: white circles 0 weights, task 1 weights in
gray remain fixed and are not pruned.

* Pruned weights are updated for task 2: filter for task 2 shares weights learned for task 1.

* Pruning and re-training results in filter used for evaluating task 2, weights for task 2 (orange) are
fixed. Process continues until running out of pruned weights

OO @) 00000 O
o O CeO |0 0000

O o | O e 0000 ||O
O O||e0 O |00 O 100
O O OXN©) O000 @0000

(a) Initial filter for Task | (b) Final filter for Task | (c) Initial filter for Task Il (d) Final filter for Task Il (e) Initial filter for Task Ill

N7 N

60% pruning + re-training training 33% pruning + re-training training

Figure source: PackNet: Adding Multiple Tasks to a Single Network by lterative Pruning, Mallya and Lazebnik, 2018

I I I N .
H I Massachusetts Institute of Technology

Iterative Pruning and Retraining

« Testing: appropriate masks applied depending on task to
replicate filters learned for task

OO OO O00O00O| O
o O o0 |0 0000

O o O oo |O000 | O
O O |e0 O 00 0|00
O O OXN©, O000| ®0000

(a) Initial filter for Task | (b) Final filter for Task | (c) Initial filter for Task Il (d) Final filter for Task Il (e) Initial filter for Task Il
60% pruning + re-training training 33% pruning + re-training training

Figure source: PackNet: Adding Multiple Tasks to a Single Network by lterative Pruning, Mallya and Lazebnik, 2018

I I I I Massachusetts Institute of Technology

Self-Supervised Learning

« Transform unlabeled images
« Label images according to transformation
« Train network with parameters (b, 0s)

Ob shared backbone parameters, 8s self-supervision parameters
« Transfer learning using 6b fine tuning for main task (8b, 6m)
Om main task parameters

L [
Distribution Shift

« Training and test distributions are often different

NN

—0—0—©

IIIHI Massachusetts Institute of Technology
Test-Time Training

* Unlabeled test sample x provides hint about test
distribution

» Allow model parameters 6 to depend on test sample x

« Learn from a single sample using self-supervision

Source: Test-time training with self-supervision for generalization under distribution shifts, Sun et al, 2020

I I I N .
’ [I Massachusetts Institute of Technology

Test-Time Training

Training
Mineb.em.6s Lm(X, y; 0b, M) + Ls(X, ys; 6b, Bs)
Testing: initialize with 6 = (Bb, B8s) from training
mineb.es Ls(X, Yys; 6b, 6s)

Prediction: 6(x) = 8*b, 8m, where 6*b is from testing
Online prediction: O(xt) initialized with 0(xt-1), allows using
information in x1,.. xt

Source: Test-time training with self-supervision for generalization under distribution shifts, Sun et al, 2020

I I I H .
I I Massachusetts Institute of Technology

Test-Time Training

Il Object recognition task only

I Joint training (Hendrycks et al. 2019)
e TIT

s TTT-Online

1530-

=

LI.I20_

10 A

0_
N 2] X 2 2] 2] Q N 3 O N 5 % 4 O
* o o & S XS <& o J N CEEEN N
& > PN O & NG O L P O < O @ S NG Q
. 3 BN Q X “ Q N
oﬁ\g ®) \((\Q b?‘/\ o (0 v @ AY) (,00 0\ Q\+

Figure source: Test-time training with self-supervision for generalization under distribution shifts, Sun et al, 2020

I I Massachusetts Institute of Technology

Test-Time Training

Training Policy Adaptation during Deployment

s
> BN Seclf-Supervised
Learning
Learning
Ta

Replay Buffer Tg Environment

>
> B Seclf-Supervised i q
Learning ’
Learning \

Observation Te Ta Observation

l_______"

Figure source: Self-supervised policy adaptation during deployment, Hansen et al, 2020

L [———
Lifelong Latent Actor-Critic

Figure source: Deep reinforcement learning amidst lifelong non-stationarity, Xie et al, 2020

IIIHI Massachusetts Institute of Technology
Open-Ended Reinforcement Learning

« Grow population of environment-agent pairs

« Continually produce new and increasingly complex
environments using mutations, random perturbations

* Train agents that learn to solve them

« Goal switching

« Compute distance between environments

Source: Enhanced POET: Open-ended reinforcement learning through unbounded invention
of learning challenges and their solutions, Wang et al 2020

I I I I Massachusetts Institute of Technology

Self-Modeling S

Robot recorded action-sensation pairs l)
Deep learning self-model consistent with data === g
Self-model used for planning of separate tasks
Emulate damage and morphological change @ L
Adapting self-model from new data

Continual tasks

DR =

o Robot detects deformed body 22
from model-reality
inconsis tency

e Self-model is adapted using
new data

e Adapted self-model allows task
execution to resume

Figure source: Task-agnostic self-modeling machines, Kwiatkowski and Lipson, Science Robotics 2019

I I I N .
’ ’ I Massachusetts Institute of Technol ogy

Meta Learning

MIT
Iddo Drori, Fall 2020

